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Connections

6

Synapse

An instance of the pathway PC -> INT
A B

A→B

Pre\Post A B

A 0 1

B 0 0



Cell targeting
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Distal dendrites

Proximal dendrites

Soma

AIS
Spine

Oblique

Trunk



Number of synapses per connection
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2 synapses per connection



Bouton density
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Bouton density = number of boutons / axon length

/ 100 𝜇m or / 𝜇m



Divergence
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1 PC contacts 2 interneurons

Divergence(A→B)

Pre\Post A B

A 0 1.2

B 0 0

A B



Convergence
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A B

1 INT is contacted by 3 PCs

Convergence(B←A)

Pre\Post A B

A 0 3

B 0 0



Connection probability
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connected pairs / all pairs
4 / 8 = 0.5 or 50%

P(di-1, di)

P(0, d)



Higher-order descriptors
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• Local connectivity patterns

• Graph theory

• Topography of long-range projections



Local connectivity patterns
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Andersen et al., 2007



Graph theory
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node

edge

Undirected graph Directed graph



Motifs
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…

…
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Topography of long-range projections

Bjaalie et al., 2005
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Topography of long-range projections

Adibi, 2019
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Topography of long-range projections

Seabrook et al., 2017
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Topography of long-range projections

Gias et al., 2005
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Topography of long-range projections

Seabrook et al., 2017
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Topography of long-range projections

Andersen et al., 2007
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Longitudinal axis
Transverse axis
Radial axis

Andersen et al., 2007

Topography of long-range projections



Topography of long-range projections
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• Axon length: 200-500 mm

• Up to 2/3 of longitudinal axis

• Boutons: 15k-30k

• Divergence: 12k-25k



Topography of long-range projections
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Andersen et al., 2007

The major organizational features of this projection are as

follows: CA3 cells located close to the dentate gyrus (proximal
CA3), although projecting both septally and temporally, project

more heavily to levels of CA1 located septal to their location.

CA3 cells located closer to CA1, in contrast, project more heavily

to the levels of CA1 located temporally (Fig. 3–30). At or close to

the septotemporal level of the cells of origin, those cells located
proximally in CA3 give rise to collaterals that tend to terminate

superficially in the stratum radiatum. Conversely, cells located

more distally in CA3 give rise to projections that terminate deeper

in the stratum radiatum and stratum oriens. At or close to the

septotemporal level of origin, CA3 pyramidal cells located near
the dentate gyrus tend to project somewhat more heavily to distal

portions of CA1 (near the subiculum), whereas CA3 projections

arising from cells located distally in CA3 terminate more heavily

in portions of CA1 located closer to CA2.



Different scales
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Neurons
Synapses

Microcircuits

Whole brain

Mesocircuits

Macrocircuits

Cognition

Molecules

Clinical



Experimental techniques
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• Light microscopy

• Electron microscopy

• Neuronal tracer

• Transsynaptic labelling

• Pair recording

• Multi-patch clamp

• Tractography



Light microscopy
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Buhl et al., 1994



Light microscopy
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Megias et al., 2001



Electron microscopy
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Freund & Buzsaki, 1996



Electron microscopy
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Merchán-Pérez et al., 2014

• L3 of young rat SSCx

• fully reconstruction of 1695 

synaptic junctions

• 3D organization is nearly random, 
only constrained by the fact that 

synapses cannot overlap in space



Neuronal tracer
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Carter and Shieh, 2015



Transsynaptic labelling
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Carter and Shieh, 2015

Li et al., 2019



Pair recording

34Deuchars & Thomson, 1996

In 11 experiments, involving 56 transverse 
hippocampal slices, 989 pairs of CA1 
pyramidal neurons were tested for synaptic 
connections.
[…] Nine of the 989 paired recordings yielded 
monosynaptic EPSPs. In six of these, both 
cells were sufficiently stable for some of the 
characteristics of the connection to be studied.

Distance x axis (mean ± SD, n= 9) 62.8 ± 72 mm [range 2-201].  
Distance y axis (mean ± SD, n=9) 17.3 ± 19.2 mm [range 3-58].
[personal communication]



Multi-patch clamp
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Tractography
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• Diffusion MRI is an application of MRI 
that is used to examine the structure of 

axon fiber tracts in the brain

• Water molecules tend to diffuse most 

rapidly along parallel bundles of fibers   
with coherent orientations

• There are various kinds of diffusion 

MRI methods, the most commonly used 

called diffusion tensor imaging (DTI)
Whole brain fiber tractography using diffusion tensor imaging
(www.ExploreDTI.com)



Experimental techniques
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Sejnowski et al 2014



Summary 1
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• Faithful reconstruction of the set of connections of a brain region 

(connectome) is a multi-scale problem

• Our tools often investigate the connectome within a certain range of scale

• Merging the scales is still an open issue

• Connectome is a complex network that diverges significantly from random 
network

• Surprisingly, it shares many features with other complex networks (e.g. 
social, telecommunication)

• Network science studies those complex networks



Lecture Overview
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Approaches
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• No axon, no space approaches

• No axon, space approaches

• Axon, space approaches



No axon, no space approaches

41

• The axon and the space are not necessary to derive the connectome

• This approach is normally used to connect point neurons
• The simplest approach is random connectivity between cells, where we still 

have to define the ‘amount’ of connectivity by specifying the target number 
of connection or mean connection probability

• Additional rules can be used to make the connectome more and more 

realistic



No axon, space approaches
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• Cells are placed in a space respecting some constrains about cell density or 

average inter-somatic distances
• Connections are first of all constrained by distance-dependent connection 

probability. We have to assume the distribution of the axon, and we have to 
assume that the axon density is proportional to the connection probability

• We have also to bind the number of connections or synapses by introducing 

other constrains such as number of synapses per connection, divergence or 
convergence

• This approach is necessary when we lack of axon reconstructions



No axon, space approaches

43

• Define the divergence (distribution)

divergence = 2



No axon, space approaches
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P(x)

P(y)
• Define the divergence (distribution)

• Use connection probability to find 
neurons to connect



No axon, space approaches

45

• Define the divergence (distribution)

• Use connection probability to find 
neurons to connect

• Define number of synapses per 
connection (distribution)



No axon, space approaches
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• Define the divergence (distribution)

• Use connection probability to find 
neurons to connect

• Define number of synapses per 
connection (distribution)

2 syns
1 syn



No axon, space approaches
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• Define the divergence (distribution)

• Use connection probability to find 
neurons to connect

• Define number of synapses per 
connection (distribution)

• Select n random segment to place n 

synapses2 syns
1 syn

P(y)



No axon, space approaches
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• Define the divergence (distribution)

• Use connection probability to find 
neurons to connect

• Define number of synapses per 
connection (distribution)

• Select n random segment to place n 

synapses

• Place synapses



Axon-based approaches
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• Proximity between axon and target cells is used to find potential synapses or 

appositions
• We have to define a threshold for the distances

• This approach often gives more synapses than expected
• Exceeding synapses are discarded with a process called pruning



Axon-based approaches
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Below threshold
Above threshold



Axon-based approaches
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Potential synapses
Appositions
Touches



Axon-based approaches
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Pruning
Synapses

x
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Reimann et al., 2015



Summary 2
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• There are a multitude of approaches but they can categorized in 3 groups 

depending if we constrain the space or not, and if we have axon or not
• In all approaches we can include more and more constrains to match known 

data
• Anyway, this with a cost of having an algorithm less predictive, something 

important when the data are sparse and we have more unknowns that 

knowns
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These data also confirm previous reports
that bidirectional connections are more than
two times as frequent than predicted by
chance (Fig. 1G).

We recorded simultaneously from up to 12
thick-tufted layer 5 pyramidal neurons in
somatosensory cortical slices (300 μm thick)
from Wistar rats (postnatal days 14-16).
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Significant differences in the overall
distribution of the number of expected
connections first appeared in groups
containing six neurons (Fig. 2).
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There was no significant correlation between
the intersomatic orientation of the neurons and
their connection probability (Fig. 3 A and B).

Multineuron patch-clamp recordings normally
focus on neurons that are within about 50 μm
of each other. We therefore searched for
synaptic clustering over greater distances (up
to 200 μm). Contrary to expectations, we found
that the average number of connections in
groups of six neurons initially increased rather
than decreasing monotonically with mean
intersomatic distance (Fig. 3C).
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At any given distance, the connection
probability for a pair of neurons with at least
one common neighbor was significantly higher
than the expected value (Fig. 4A) and that
pairs of neurons sharing more than one
common neighbor occurred significantly more
often than expected (Fig. 4B). The connection
probabilities rose linearly with the number of
common neighbors (Fig. 4C).
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• Use multi-patch clamp to study connectivity

• Example on how local connectivity deviates from random networks

• Introduce common neighbor bias

• Modeling is used to create random networks to compare with

Key points
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L5

soma
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• Modeling offers full possibility in analysis

• A ‘good’ model has predictive power

• The model predicts that the divergence from random connectivity can be 
explained by a series of geometrical properties, first of all the anisotropy of 

morphologies

• This links back to the importance of morphologies

• We normally pass from experiments to models, in this paper we see an 
example on how useful is also to pass from models to experiments

Key points
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mammalian GFP reconstitution across synaptic partners (mGRASP)

Kim et al., 2012
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• Use of a combined technique to label axon, postsynaptic neurons, and 

synapses
• Long-range connectivity can also diverge from random networks

• This phenomenon can occur at different levels: inter-neurons, inter-
branches, intra-branch

• This behavior can really affect the communication from CA3 to CA1

• Connectivity patterns can be (quite) captured by axon-based approaches 
(Gal et al.), but the difficulty to have full-axon reconstructions complicates 

the modeling of long-range connectivity

Key points



• Experimental exploration of high-order connectivity is possible until a certain 

point, but it is showing the complexity of neuronal networks
• Both local and long-range connectivity show an high degree of complexity

• Each modeling approach capture a different portion of this complexity
• All three papers show a virtuous loop between experiments and models

Summary 3
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• Connectome is a complex network that diverges significantly from random network

• Reconstructing the connectivity is a multi-scale problem

• Merging the scales is still challenging

• This is because techniques look at a smaller range of scales, techniques have a 
limited capability, we still lack of a complete understanding …

• Modeling is a fundamental complementary tool to investigate connectivity because of 

the limitations of the techniques

• We start to understand the origin of this complexity

• And how much the different modeling approaches can approximate the real 

connectomes

Lecture Summary
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• Terminology (pathway, connection, bouton…)

• Connectivity matrix

• Calculate divergence, convergence…

• Higher-order connectivity patterns (local patterns, long-range topography, motifs…)

• Understand the different experimental techniques (light microscopy…)

• Understand the different modeling approaches (no volume, no axon…)

What you have learnt
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